BILANGAN BULAT

MODUL 1

BILANGAN BULAT

Gatot Muhsetyo

 

Pendahuluan

       Dalam modul Bilangan Bulat ini diuraikan tentang awal pembahasan bilangan sebagai kebutuhan hidup manusia, meliputi bilangan asli, bilangan cacah, dan bilangan bulat. Sebagai obyek matematika, bilangan bulat dan operasinya dapat membentuk suatu sistem atau struktur. Uraian berikutnya tentang prinsip induksi matematika sebagai alat pembuktian teorema yang penggunaannya tersebar luas di dalam berbagai topic matematika.

Sifat-sifat operasi bilangan bulat diuraikan kembali sebagai dasar pembicaraan berikutnya, meliputi sifat komutatif, sifat asosiatif, sifat distributif, sifat unsur identitas, sifat inversi, dan sifat kanselasi.

Pembahasan Induksi matematika dimulai dengan notasi jumlah dan notasi kali beserta sifat-sifat dan penggunaannya, dan dilanjutkan penjelasan tentang konsep induksi matematika beserta penerapannya untuk membuktikan hubungan-hubungan tertentu.

Secara keseluruhan, materi pokok dalam modul ini meliputi bilangan asli, bilangan cacah, bilangan bulat, operasi bilangan bulat dan sifat-sifatnya, prinsip urutan yang rapi, bilangan bulat terbesar, sedikit uraian tentang bilangan rasional dan bilangan irasional, notasi jumlah dan notasi kali, dan diakhiri dengan prinsip induksi matematika.

 

Kompetensi Umum

Kompetensi Umum dalam mempelajari modul ini adalah mahasiswa mampu memahami konsep bilangan bulat, operasi bilangan bulat, sistem bilangan bulat, induksi matematikasifat, dan keterkaitan antara topik-topik bilangan bulat dan induksi matematika.

 

 

 

Kompetensi Khusus

Kompetensi Khusus dalam mempelajari modul ini adalah mahasiswa mampu menjelaskan konsep bilangan bulat, konsep operasi bilangan bulat dan sifat-sifatnya, system bilangan bulat, penggunaan notasi jumlah, penggunaan notasi kali, induksi matematika, serta keterkaitan satu sama lain untuk menyelesaikan masalah-masalah matematika tertentu

 

Susunan Kegiatan Belajar

       Modul 1 ini terdiri dari dua Kegiatan Belajar. Kegiatan Belajar pertama adalah Bilangan Bulat, dan Kegiatan Belajar kedua adalah Induksi Matematika.. Setiap kegiatan belajar memuat Uraian, Contoh, Tugas dan Latihan, Rambu-Rambu Jawaban Tugas dan Latihan, Rangkuman, dan Tes Formatif. Pada bagian akhir modul 1 ini ditempatkan  Rambu-Rambu Jawaban Tes Formatif 1 dan Tes Formatif 2.

 

Petunjuk Belajar

1. Bacalah Uraian dan Contoh dengan cermat dan berulang-ulang sehingga Anda

benar-benar memahami dan menguasai materi pembahasan.

2. Kerjakan Tugas dan  Latihan yang  tersedia  secara  mandiri. Jika  dalam  kasus

atau tahapan tertentu Anda  mengalami  kesulitan  menjawab, maka  pelajarilah

Rambu-Rambu Jawaban  Tugas  dan Latihan. Jika  langkah  ini  belum  berhasil

menjawab permasalahan, maka  mintalah  bantuan  tutor  Anda, atau  orang lain

yang lebih tahu.

3. Kerjakan  Tes  Formatif  secara   mandiri, dan   periksalah  Tingkat  Penguasaan

Anda   dengan   cara   mencocokkan   jawaban   Anda   dengan   Rambu-Rambu

Jawaban   Tes   Formatif.  Ulangilah   pengerjaan  Tes  Formatif   sampai   Anda

benar-benar merasa mampu mengerjakan semua soal dengan benar.

 

 

 

 

 

MODUL 1

KEGIATAN BELAJAR 1

BILANGAN BULAT

Uraian

Pembahasan tentang bilangan bulat (integers) tidak bisa dipisahkan dari uraian tantang bilangan asli (natural numbers) dan bilangan cacah (whole members) karena kreasi tentang bilangan-bilangan ini merupakan proses sosial dan budaya yang berlangsung berurutan dalam waktu ribuan tahun.

Konsep tentang bilangan dan cara mencacah (menghitung, counting) berkembang selama sekitar 15.000 tahun, mulai dari zaman prasejarah (poleolithic, Old Stone Age) sampai dengan zaman sejarah (sekitar tahun 400 S.M.). Dalam periode atau zaman ini, mereka diduga telah emmpelajari cara bertani atau bercocok taman, cara berternak, cara menggunakankaleder, cara mengukur atau menimbang berat, cara memindahkan barang dengan kereta atau gerobak, cara membuat perahu, cara berburu, cara pengobatan tradisional, dan cara berhitung.

 

1. Bilangan Asli

Sejak periode sejarah, diduga dimulai sekitar tahun 400 S.M., orang melalui memikirkan bilangan sebagai konsep abstrak. Misalnya, mereka menyebut tiga kerikil dan tiga binatang mempunyai sifat persekutuan, yaitu suatu kuantitas yang disebut tiga. Sifat persekutuan tiga ini bisa dimiliki oleh kelompok benda apa saja sehingga sifat ini menjadi terbatas dari obyek atau sasaran pembicaraan. Dalam istilah yang lebih sederhana, sifat-sifat persekutuan satuan (oneness), duaan (twoness), atau tigaan (threeness) merupakan sifat persekutuan yang dimiliki oleh sebarang kumpulan benda untuk menunjukkan kesamaan kuantitas.

Keperluan tentang kuantitas merupakan kebutuhan dasar manusia dalam kehidupan berkeluarga dan bermasyarakat, terutama untuk menghitung (mencacah) dan mem­ban­dingkan jumlah barang atau benda.

Ke­perluan menghitung (mencacah, counting) mendorong orang untuk mencari cara yang mudah, antara lain dengan membuat lambang bilangan (muneral) dan cara me­ng­gu­nakannya (sistem numerasi). Sistem numerasi membuat sekumpulan lambang dasar dan sejumlah atauran untuk menghasilkan lambang-lambang bilangan yang lain. Beberapa peradaban yang telah mengembangkan sistem numerasi antara lain adalah Mesir (sekitar tahun 3000 S.M.), Babylonia (sekitar tahun 2000 S.M.), Yunani atau Greek (sekitar tahun 600 S.M.), Mayan (sekitar tahun 300 S.M.), Jepang – China (sekitar tahun 200 S.M.), Romawi (sekitar tahun 100 M), dan Hindu-Arab (mulai sekitar tahun 300 S.M. di India, mengalami perubahan di wilayah timur tengah sekitar tahun 750 Masehi, berkembang di Eropa dan dipakai di seluruh dunia sampai sekarang). Dari uraian di atas kita dengan singkat telah melihat perjalanan pengembangan konsep bilangan sejak pertama kali pada zaman Poleolithic sampai pada zaman sejarah. Dengan demikian kita perlu membuat asumsi bahwa manusia telah menemukan konsep bilangan asli (counting/natural members) dan telah menemukan himpunan lambang untuk me­nya­takan konsep bilangan asli yaitu 1, 2, 3, 4, …

Untuk selanjutnya himpunan bilangan asli dinyatakan dengan

N = {1, 2, 3, 4, … }

 

1.  Bilangan Cacah

Untuk kepentingan masyarakat zaman pertanian, sebelum zaman revolusi, mereka hanya memerlukan mencacah, menjumlah, dan mengalikan. Seiring dengan per­kem­bangan zaman, mesyarakat memerlukan sistem bilangan yang dapat memenuhi ke­per­lu­an lain, yaitu mengurangkan dan membagi. Dengan demikian mereka mem­pu­nyai tun­tutan pekerjaan yang tidak sekedar berhitung (aritmetika) tetapi hal lain yang lebih luas.

Jika sebelumnya mereka menerima pernyataan tanpa bukti (postulat):

p + q  adalah suatu bilangan asli

p x q  adalah suatu bilangan asli

maka kesulitan akan muncul ketika pengertian pengurangan mulai diperkenalkan melalui penjumlahan:

p – q =  r  jika ada r sedemikian hingga p = q + r

Kita bisa melihat kesulitan itu. Pengurangan pada unsur-unsur hipunan bilangan asli dapat dilakukan hanya jika p lebih dari q, artinya himpunan bilangan asli tidak bersifat tertutup terhadap pengurangan. Pada awalnya tentu mereka memahami bahwa:

3 – 2 =  1, 4 – 3 = 1, 5 – 4 =  1

dan mulai mempertanyakan bagaimana dengan

3 – 3 = ? , 4 – 4 = ?,  5 – 5 = ?

Jawabannya adalah mereka perlu “tambahan” bilangan baru, yang kemudian disebut dengan nol (zero), yang diberi makna:

3 = 3 + 0, 4 = 4 + 0, 5 = 5 + 0

Sekarang kita telah menambahkan unsur baru 0 ke dalam sistem bilangan asli, sehingga diperoleh himpunan baru yang disebut himpunan bilangan cacah, dinyatakan dengan:

W = {0, 1, 2, 3, 4, …}

 

3.  Bilangan Bulat

Dengan berkembangnya masyarakat industri, manusia memerlukan bilangan untuk ke­perluan pembukuan tingkat lanjut, antara lain untuk menghitung hutang dan pihutang, serta tabungan dan pinjaman. Pertanyaan yang muncul serupa dengan permasalahan:

6 – 7 = ?,  8 – 10 = ?, 3 – 10 = ?

Permasalahan ini serupa dengan usaha menambah bilangan-bilangan baru di dalam W sehingga mereka dapat melakukan semua pengurangan, atau himpunan baru yang di­peroleh bersifat tertutup terhadap pengurangan.

Jawaban terhadap kesulitan mereka adalah tambahan bilangan-bilangan baru yang diperoleh dari:

0 – 1, 0 – 2, 0 – 3, 0 – 4, …

yang kemudian dilambangkan dengan:

-1, -2, -3, -4, …

sehingga diperoleh himpunan baru yang disebut himpunan bilangan bulat, dan dinyatakan dengan:

Z = {…, -2, -1, 0, 1, 2, 3, …}

Dengan  digunakannya garis bilangan untuk menyatakan representasi bilangan, dan mem­beri makna terhadap bilangan-bilangan di sebelah kanan nol sebagai bilangan po­sitif serta di sebelah kiri nol sebagai bilangan negatif, maka himpunan bilangan bulat da­pat dinyatakan sebagai:

Z = {…, -2, -1, 0, 1, 2, 3, …}

 

4.  Sistem Bilangan Bulat

Untuk keperluan menghitung, orang dapat melakukan penjumlahan, pengurangan, perkalian, atau pembagian bilangan. Apa yang dilakukan oleh orang itu kemudian di­se­but sebagai suatu operasi. Pada dasarnya suatu operasi adalah mengambil sepasang bi­lang­an untuk mendapatkan bilangan lain yang tunggal. Bilangan yang diperoleh mung­kin unsur atau bukan unsur dari himpunan tertentu.

Definisi 1.1

Suatu sistem matematika adalah suatu himpunan bersama-sama dengan satu atau lebih operasi pada himpunan itu.

Notasi

Suatu sistem matematika yang terdiri dari himpunan S dan operasi * ditunjukkan dengan (S, #)

Jika # adalah operasi kedua S, maka (S, *, #) adalah sistem matematika yang terdiri dari himpunan S, operasi pertama *, dan operasi kedua #.

 

Berdasarkan pengetahuan yang telah kita pelajari sebelumnya, beberapa definisi yang terkait dengan sifat operasi adalah:

Definisi 1.2

Ditentukan bahwa * adalah suatu operasi pada himpunan S.

Operasi * disebut bersifat:

a.  tertutup jika p * q = r dan r Î S untuk setiap p, q Î S.

b.  komutatif jika p * q = q * p untuk setiap p, q Î S

c.         assosiatif jika p * (q * r) = (p * q)*r untuk setiap p, q, c Î S

d.         mempunyai unsur identitas jika untuk semua p Î S, ada i Î S,

sehingga p * i  =  i * p = p . I disebut unsur identitas operasi *.

  1. memenuhi sifat inversi (invertibel) jika untuk semua pÎ S, ada x Î S,

sehingga p * x = x * p = i.  x disebut inversi dari p, dan p disebut inversi

dari x.

Definisi 1.3

Ditentukan bahwa * adalah suatu operasi pertama dan ⋕ adalah suatu operasi kedua pada himpunan S.

Operasi * bersifat distributif terhadap # jika

P * (q #r) = (p * q) # (p * r) untuk semua p, q, r Î S.

 

Selanjutnya, sifat-sifat operasi penjumlahan dan perkalian pada himpunan bilangan bulat merupakan aksioma, yaitu:

1.         tertutup             :           p + q Î Z         dan p x q Î Z untuk semua p, q, Î Z

2.         komutatif          :           p + q = q + p dan p x q = q x p untuk semua p, q Î Z

3.         assosiatif           :           p + (q + r) = (p + q) + r dan p x (q x r) = (p x q) x r untuk

semua p, q, r Î Z

4.         mempunyai unsur identitas

p + 0 = p dan p x 1 = p untuk semua p Î Z

5.         memenuhi sifat identitas penjumlahan:

untuk semua p Î Z, ada 0 Î Z sehingga p + 0 = 0 + p = p

0 adalah unsur identitas penjumlahan

6.         memenuhi sifat inversi (invertibel) penjumlahan:

untuk semua p Î Z, ada x Î Z sehingga p + x = x + p = 0

x disebut inversi dari p, ditunjukkan dengan x = -p

7.         distributif perkalian terhadap penjumlahan

(p + q) . r = p . r + q . r

8.         memenuhi hukum kanselasi:

jika p, q, r Î Z, r ¹ 0, dan pr = qr, maka p = q

 

Dalam kaitannya dengan urutan bilangan bulat, kita akan menggunakan himpunan bilangan bulat positif {1, 2, 3, …}, untuk menyatakan hubungan lebih kecil (atau lebih besar) antara dua bilangan bulat.

Definisi 1.4

Ditentukan p, q, Î Z

p disebut kurang dari q (atau q disebut lebih dari p), ditulis p < q   atau

q > p, jika ada suatu bilangan bulat positif r sehingga q – p = r

 

Contoh 1.1

(a).       5 > 4 sebab ada bilangan bulat positif 1 sehingga 5 – 4 = 1

(b).       2 < 7 sebab ada bilangan bulat positif 5 sehingga 7 – 2 = 5

(c). p > 0 untuk setiap p Î {1, 2, 3, …} sebab ada bilangan bulat positif p

sehingga p – 0 = p

 

Dua sifat dasar tentang urutan bilangan bulat yang perlu untuk dipahami adalah:

(1)  ketertutupan bilangan bulat positif:

p + q dan pq adalah bilangan-bilangan bulat positif untuk semua bilangan-

bilangan bulat positif p dan q

(2)        hukum trikotomi

Untuk setiap p Î Z berlaku salah satu dari p > 0, p = 0, atau p < 0.

Himpunan bilangan bulat disebut suatu himpunan yang terurut karena Z     mempunyai suatu himpunan bagian yang tertutup terhadap penjumlahan dan   perkalian, serta memenuhi hukum trikotomi untuk setiap bilangan bulat

 

Contoh 1.2

Buktikan: Jika p < q dan r > 0, maka pr < qr

Bukti:

Diketahui bahwa p < q, maka menurut definisi 1.4, q – p > 0. Selanjutnya, karena q – p > 0 dan r > 0, maka menurut sifat dasar ketertutupan perkalian urutan bilangan bulat positif, r (q – p) > 0. Menurut sifat distributif, r(q – p) = rq – rp, dengan demikian r(q – p) > 0 berakibat rq – rp > 0.

rq – rp > 0, menurut definisi 1.4, rp < rq, dan menurut sifat komutattif perkalian, pr < qr.

 

Contoh 1.3

Buktikan: (–1)p = –p

Bukti:              (–1)p + 1.p = (-1 + 1).p = 0, dan –p + p = -p + 1.p = 0, sehingga

(-1)p + 1.p = -p + 1.p. Berdasarkan hukum kauselasi, (-1)p = -p

 

Contoh 1.4

Sistem (Z, Æ), yaitu sistem bilangan bulat terhadap operasi penjumlahan, merupakan suatu grup, dan juga merupakan grup Abel sebab operasi Æ terhadap bilangan bulat me­me­nuhi sifat-sifat terhadap assosiatif, mempunyai unsur identitas, dan memenuhi sifat in­versi.

 

Prinsip Urutan Yang Rapi (Well Ordering Principle)

       Suatu himpunan H disebut terurut rapi (well ordered) jika setiap himpunan

bagian dari H yang tidak kosong mempunyai unsur terkecil      

 

Perlu diingat kembali bahwa k disebut unsur terkecil suatu himpunan S jika k kurang dari atau sama dengan x untuk setiap x S.

 

Contoh 1.5

(a) S = {2,5,7}  mempunyai  unsur  terkecil 2 sebab 2 ≤ x untuk setiap x S, yaitu

2 ≤ 2, 2 ≤ 5, dan 2 ≤ 7

(b) M = {3} mempunyai unsur  terkecil 3 sebab  3 ≤ x  untuk  setiap  x M,  yaitu

3 ≤ 3

 

Contoh 1.6

(a) S = {2,5,7} adalah himpunan yang terurut rapi sebab setiap himpunan bagian

     dari S yang tidak kosong, yaitu {2}, {5}, {7}, {2,5}, {2,7}, {5,7} dan {2,5,7}

mempunyai unsur terkecil berturut-turut adalah 2,5,7,2,2,5, dan 2. 

(b) Z+ adalah himpunan yang terurut rapi sebab tidak ada himpunan bagian dari Z+

        yang tidak kosong dan tidak mempunyai unsur terkecil

(c) Z adalah himpunan yang tidak terurut rapi sebab ada  himpunan  bagian dari Z

yang tidak kosong dan tidak mempunyai unsur terkecil, misalnya {0,-1,-2,…}

Definisi 1.5

Bilangan riil terbesar [x] adalah bilangan bulat terbesar kurang dari atau sama

dengan x, yaitu [x] adalah bilangan bulat yang memenuhi [x] ≤ x ≤ [x] + 1

 

Sebagai catatan perlu diingat kembali bahwa Fungsi f(x) = [x] disebut dengan fungsi bilangan bulat terbesar, atau juga disebut dengan fungsi lantai (floor function). Fungsi g(x) =  disebut fungsi atap (ceiling function), dimana  adalah bilangan bulat terkecil lebih dari atau sama dengan x, misalnya  dan

Suatu bilangan riil x disebut rasional jika dan hanya jika ada bilangan-bilangan bulat a dan b, b 0, dan x = a/b. Suatu bilangan yang tidak rasional disebut bilangan irasional, misalnya log 5 , , bilangan e = 2,71828…, dan bilangan = 3,14…

 

Contoh 1.7

(a) [2/3] = 0 , [7/3] = 2 , dan [] = 3

(b) [ – 2/3] =  – 1 , [ –7/3] =  – 3

(c) [1,3] = 1, [] = 1

 

Tugas dan Latihan

Tugas

Untuk memperluas wawasan Anda tentang sistem numerasi, carilah dan bacalah sumber-sumber pustaka yang memuat sejarah bilangan. Selanjutnya jawablah beberapa pertanyaan berikut

1.         Apa maksudnya sistem numerasi bersifat aditif?

2.         Apa yang disebut dengan sistem numerasi menggunakan nilai tempat?

3.         Apa maksudnya sistem numerasi bersifat multiplikasi?

4.         Sebutkan beberapa cara menuliskan lambang bilangan dan terjadi pada sistem

numerasi yang mana.

5.         Sebutkan basis-basis bilangan yang pernah digunakan.

 

2.         Latihan

Untuk memperdalam pemahaman Anda tentang materi bilangan bulat, kerjakanlah soal-soal latihan berikut:

1.         Tunjukkan bahwa –(p + q) = (– p) + (– q) untuk semua p, q Î Z

2.         Tunjukkan bahwa – (p.q) = p . (-q) untuk semua p, q Î Z

3.         Diketahui p, q, r Î Z, p < q, dan r < 0

Buktikan: p + r < q + r

4.         Diketahui p, q, r Î q, p > q dan q > r

Tunjukkan: p > r

5.         Diketahui C = {1, -1}

Selidiki apakah (C, x) merupakan sistem grup:

 

Rambu-rambu Jawaban Tugas dan Latihan

Rambu-Rambu Jawaban Tugas

1.         Sistem numerasi disebut bersifat aditif jika nilai bilangan sama dengan jumlah

nilai setiap lambang bilangan yang digunakan.

 

Contoh:

Mesir Kuno:            Lambang    ೨ ೨ ೨ ೨  ⋂ ⋂ ⋂ ⋂ ⋂ ∣∣∣

2. Sistem numerasi disebut menggunakan nilai tempat jika nilai lambang bilangan

didasarkan pada tempat atau posisi lambang bilangan, artinya lambang yang

sama bernilai berbeda karena posisinya berbeda.

Contoh:

Babylonia:    Lambang          :           r <  s

Nilai 71            :           (1 x 60) + 10 + 1

Desimal        :           Lambang          :           5 5 5

Nilai setiap lambang 5 berbeda karena letaknya yang berbeda

5 5 5

bernilai lima

bernilai lima puluh

bernilai lima ratus

3. Sistem numerasi disebut multiplikatif jika mempunyai lambang untuk bilangan-

bilangan 1, 2, 3, …, b – 1, b, b2, b3, b3, …, tidak mempunyai lambang nol, dan

menggunakan nilai tempat.

Contoh:

Jepang-China           :           Lambang          :           ~                       x                   y   Ђ  д  ŧ   )( Һ  ƒ

Nilai                :           1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 100, 1000

4. Cara menuliskan lambang bilangan

(a)        Acak, untuk sistem numerasi Mesir Kuno

(b)       Mendatar (horizontal), untuk sistem-sistem numerasi

Babylonia, Yunani (greek), Romawi, Hindu-Arab

(c)        Tegak (vertikal), untuk sistem-sistem numerasi Jepang-China dan

Mayan

5. Basis bilangan yang pernah digunakan

(a)        Basis 10           :           sistem numerasi Jepang-China, Hindu Arab

(b)       Basis 20           :           sistem numerasi Mayan

(c)  Basis 60    :           sistem numerasi Babylonia

 

Rambu-Rambu Jawaban Latihan

1. –(p + q) = –1(p + q) = (p + q)(– 1) = p(–1) + q(– 1) = – 1p – 1q = (–1)p + (–1)q

2. p(–q) + pq = p(–q + q) = p.0 = 0 =  –(pq) + (pq), sesuai dengan sifat  kanse-

lasi, p(–q) = –(pq)

3. (q + r) – (p + r) = q – p adalah positif sebab p < q . Jadi p + r < q + r

4. p > q dan q > r , maka p – q > 0 dan q – r > 0 , sehingga (p – q) + (q – r) > 0

p – r = p + 0 – r = p + (–q + q) – r = (p – q) + (q – r) > 0, jadi p > r

5. Tabel perkalian dari unsur-unsur C adalah :

x         1       -1                 Dari   tabel  perkalian di samping  dapat

1         1       -1                 ditentukan  bahwa  operasi x bersifat ter-

-1        -1        1                 tutup, bersifat asosiatif (sebab C Z,

mempunyai unsur identitas 1, dan memenuhi sifat inversi.

Rangkuman

Berdasarkan seluruh paparan pada Kegiatan Belajar 1 ini, maka garis besar bahan yang dibahas meliputi Definisi, Teorema, Contoh, dan Latihan tentang bilangan bulat, terutama tentang konsep bilangan bulat, sistem bilangan bulat, operasi bilangan bulat dan sifat-sifatnya, dan aksioma sifat-sifat operasi penjumlahan dan perkalian bilangan bulat. Paparan kemudian dilanjutkan dengan prinsip urutan yang rapi serta hubungan dua bilangan bulat (sama dengan, lebih dari, kurang dari), dilengkapi dengan pengertian bilangan bulat terbesar, fungsi lantai, dan fungsi atap. Pada bagian akhir diingatkan kembali pengertian bilangan rasional dan bilangan irasional.

 

 

1. Himpunan bilangan bulat dinyatakan dengan Z = { …,-2,-1,0,1,2,…}

2. Definisi 1.1

 Suatu sistem matematika adalah suatu himpunan bersama-sama dengan

             satu atau lebih operasi pada himpunan itu.

3. Definisi 1.2

Ditentukan bahwa * adalah suatu operasi pada himpunan S.

Operasi * disebut bersifat:

a.  tertutup jika p * q = r dan r Î S untuk setiap p, q Î S.

b.  komutatif jika p * q = q * p untuk setiap p, q Î S

c.  assosiatif jika p * (q * r) = (p * q)*r untuk setiap p, q, c Î S

d. mempunyai unsur identitas jika untuk semua p Î S, ada i Î S,

sehingga p * i  =  i * p = p . I disebut unsur identitas operasi *.

4. Definisi 1.3

Ditentukan bahwa * adalah suatu operasi pertama dan ⋕ adalah suatu

operasi kedua pada himpunan S.

Operasi * bersifat distributif terhadap # jika

P * (q #r) = (p * q) # (p * r) untuk semua p, q, r Î S.

4. Definisi 1.4

Ditentukan p, q, Î Z

p disebut kurang dari q (atau q disebut lebih dari p), ditulis p < q   atau

q > p, jika ada suatu bilangan bulat positif r sehingga q – p = r

5. Definisi 1.5

Bilangan riil terbesar [x] adalah bilangan bulat terbesar kurang dari atau

sama  dengan x, yaitu [x] adalah bilangan bulat yang memenuhi

[x] ≤ x ≤ [x] + 1

6. Prinsip Urutan Yang Rapi (Well Ordering Principle)

       Suatu himpunan H disebut terurut rapi (well ordered) jika setiap himpunan

bagian dari H yang tidak kosong mempunyai unsur terkecil      

 

Tes Formatif 1

1. Skor 10

Jika a,b,cZ, maka buktikan bahwa ac < bc

2. Skor 10

Buktikan bahwa tidak ada bilangan bulat positif kurang dari 1

3. Skor 10

Tentukan apakah himpunan-himpunan berikut terurut rapi

(a) A = {-2,3,4}

(b) B = {2/3,2,}

(c) Himpunan bilangan bulat negative

(d) himpunan bilangan cacah

(e) himpunan rasional

(f) himpunan bilangan riil

4. Skor 10

Carilah nilai-nilai dari :

(a) [0,12]

(b) [7/9]

(c) [5]

(d) [-1]

5. Skor 20

Jika k adalah suatu bilangan bulat, maka buktikan bahwa :

[x + k] = [x] + k untuk setiap bilangan riil x

6. Skor 10

Carilah nilai [x] + [-x] jika x adalah suatu bilangan riil

7. Skor 20

Buktikan bahwa [x] + [x + ] = [2x] jika x adalah suatu bilangan riil

8. Skor 10

Buktikan bahwa  adalah suatu bilangan irasional.

 

Cocokkanlah jawaban Anda dengan Rambu-Rambu Jawaban Tes Formatif 1 yang terdapat di bagian halaman akhir dari modul ini. Kemudian perkirakan skor jawaban yang Anda kerjakan benar, dan gunakan kriteria berikut untuk mengetahui tingkat penguasaan Anda terhadap pemahaman materi Kegiatan Belajar 1.

Skor jawaban yang benar

Tingkat Penguasaan =  ————————————-  x  100 %

                                                                          100

Tingkat penguasaan Anda dikelompokkan menjadi :

Baik sekali    :  90 % – 100 %

Baik               :  80 % -  89 %

Cukup           :  70 % -  79 %

Kurang          :  <  70 %

Apabila Anda mencapai tingkat penguasaan 80 % atau lebih, maka Anda dapat meneruskan ke Kegiatan Belajar 2. Prestasi Anda bagus sekali. Jika tingkat penguasaan Anda kurang dari 80% , maka sebaiknya Anda mengulangi materi Kegiatan Belajar 1 , terutama pada bagian-bagian yang belum Anda kuasai dengan baik.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MODUL 1

KEGIATAN BELAJAR 2

PRINSIP DASAR MATEMATIKA

 

 

Uraian

 

Prinsip induksi matematika merupakan suatu alat berharga untuk mem­buk­tikan hasil-hasil yang terkait dengan bilangan bulat, atau hubungan tertentu yang dapat diperluas berlaku untuk semua bilangan asli. Hasil-hasil yang terkait ter­uta­ma tentang penjumlahan, dan hubungan tertentu antara lain dapat berupa ketidak­samaan, keterbagian, atau differensial.

Dalam kaitannya dengan hasil penjumlahan, prinsip induksi matematika melibatkan notasi jumlah (summation) dan notasi kali (products). Kedua notasi ini sangat bermanfaat untuk menyederhanakan tulisan sehingga menjadi lebih singkat dan lebih mudah dipahami.

1.1.      Notasi Jumlah dan Notasi Kali

Notasi jumlah adalah notasi yang dilambangkan dengan å, dan notasi kali adalah notasi yang dilambangkan dengan , dan didefinisikan sebagai:

 

Huruf i dari indeks jumlah notasi jumlah atau notasi kali disebut variabel dummy karena dapat diganti oleh sebarang huruf, misalnya:

=

=   =

i = 1 disebut batas bawah (lower limit) dan i = r disebut batas atas (upper limit).

Contoh 1.1

(a) =  1 + 2 + 3 + 4  =  10

(b) = 1 . 2 . 3 . 4  =  24

(c) = 3 + 3 + 3 + 3 + 3 = 15

(d) 3 = 3 . 3 . 3 . 3 . 3 = 243

(e)        = 12 + 22 + 32  =  14

(f)  = 12 . 22 . 32  =  36

Selanjutnya, indeks jumlah tidak harus dimulai dari 1, artinya dapat dimulai dari bilangan bulat selain 1 asalkan batas bawah tidak melebihi batas atas.

 

Contoh 1.2

(a) =  3 + 4 + 5  =  12

(b) = (2.4 – 1) + (2.5 – 1) + (2.6 – 1)  =  27

(c)  = 22 . 23 . 24  =  4 . 8 . 16  =  572

(d)  = (2 – 1)(3 – 1) (4 – 1)  =  1 . 2 . 3  =  6

Beberapa sifat yang terkait dengan notasi jumlah adalah:

(1) = txr + txr+1 + … + txs

                               = t(xr + xr+1 + … + xs)

=

(2) =  (xr + yr) + (xr+1 + yr + 1)+ … + (xs + ys)

= (xr + xr + 1 + … + xs) + (yr + yr + 1 + … + ys)

= +

 

(3)  xi yj  =  (xi )

= xi (yc + yc+1 + … + yd)

=  xa (yc + yc+1 + … + yd) + xa+1 (yc + yc +1 + …+yd) + … +

xb (yc + yc+1 + … + yd)

= (xa + xa+1 + … + xb)(yc + yc+1 + … + yd)

=

(4)    =

=

=  yj xi

= xi yj

 

Contoh 1.3

(a) 2xi  =  2x3 + 2x4 + 2x5  =  2(x3 + x4 + x5) = 2xi

(b) (2ai + 3bi)            =          (2a2 + 3b2) + (2a3 + 3b3) + (2a4 + 3b4)

=          (2a2 + 2a3 + 2a4) + (3b2 + 3b3 + 3b4)

=          2(a2 + a3 + a4) + 3(b2 + b3 + b4)

=          2ai + 3bi

(c) ij2     =   (i . 12 + i . 22)

=  5i  =  5 . 1 + 5 . 2 + 5 . 3  =  30

(d) ij2  =  (i . j2 + 2 . j2 + 3 . j2)

=   =  6 . 12 + 6 . 22  = 6 . 1 + 6 . 4  =  30

 

1.2       Prinsip Induksi Matematika (Principle of Mathematical Induction)

S adalah suatu himpunan bagian dari himpunan bilangan asli yang unsur-unsurnya memenuhi hubungan.

Jika: (a)  1 Π S

(b)   k Î S  berakibat (k + 1) Î S

maka: S memuat semua bilangan asli, yaitu S = N

Bukti:

Misalkan S Ì N dan unsur-unsur S memenuhi suatu hubungan, serta (a) dan (b) dipenuhi oleh S. Harus dibuktikan bahwa S = N. Untuk membuktikan S = N digunakan bukti tidak langsung.

Anggaplah S ≠ N, maka tentu ada F Ì N dan F ≠ Æ yang mana F = {t Î N| t Ï S}.

Karena F ≠ Æ dan F Ì N, maka menurut prinsip urutan rapi (Well Ordering Principle), F mempunyai unsur terkecil k, yaitu k Î F tetapi k Ï S.

k ≠ 1 sebab 1 Î S, berarti k > 1, dan akibatnya k – 1 Î N.

k adalah unsur terkecil F, maka k – 1 Ï F sebab k – 1 < k, berarti k – 1  Î S.

k – 1 Î S dan S memenuhi (b), maka

(k – 1) + 1 Î S, atau k – 1 + 1 Î S, yaitu  k Î S.

Terjadi kontradiksi karena k Ï S dan k Î S, jadi S = N

Dalam pernyataan lain, prinsip induksi matematika dapat ditulis dengan

S(n) adalah suatu pernyataan yang memenuhi hubungan untuk satu atau lebih n Î N.

Jika:           (a) S(1) benar

(b) S(k) benar berakibat S (k + 1) benar

maka S(k) benar untuk semua n Î N.

 

Contoh 1.4

Buktikan untuk sebarang n Î Z+, = 1 + 2 + 3 + … + n  =  n (n + 1)

Bukti:   S(n) :   = n (n + 1)

S(1) benar sebab untuk n = 1:

=  = 1  dan n (n + 1) = . 1 (1 + 1) = . 2  =  1

Misalkan S(k) benar, yaitu untuk n = k:

=  1 + 2 + … + k  =  k (k + 1)

Harus dibuktikan S(k + 1) benar, yaitu:

= 1+ 2 + 1…+ k+ k + 1 = (k +1)(k + 1 +1) =(k +1) (k+ 2)

= 1 + 2 + … + k + k + 1 =  k(k + 1) + k + 1

k(k + 1)             = (k + 1) (k + 1) =(k + 1) .  (k + 2)

= (k + 1)( k + 2)

Jadi: S(n) benar untuk sebarang n Î Z+

 

Contoh 1.5

Buktikan untuk sebarang n Î Z+, = 12 + 22 + …+ n2 = n(n + 1)(2n + 1)/6

Bukti:   S(n)  = = n(n + 1)(2n + 1)/6

S(1) benar sebab untuk n = 1:

= = 12 = 1 dan n(n + 1)(2n + 1) =  . 1 . 2 . 3  =  1

Misalkan S(k) benar, yaitu untuk n = k:

= 12 + 22 + … + k2 = k(k + 1)(2k + 1)

Harus dibuktikan S(k + 1) benar, yaitu

= 12 + 22 + … +k2 + (k + 1)2 = (k + 1)(k + 2)(2k + 3)

= 12 + 22 + … +k2 + (k + 1)2 = k(k + 1) (2k + 1) + (k + 1)2

k(k + 1) (2k + 1)

= (k + 1) {k (2k + 1) + (k + 1)}

= (k + 1) {k(2k + 1) +6 (k + 1)}

= k (k + 1) + (2k2 + k + 6k +6)

=  (k + 1) (2k2 + 7k + 6)

= (k + 1)(k + 2) (2k +3)

Jadi: S(n) benar untuk sebarang n Î Z+

 

Contoh 1.6

Buktikan: untuk semua n Î Z+, dan n ³ 6, 4n < n2 – 7

Bukti      :         S(n): 4n < n2 – 7, n ³ 6

S(6) benar sebab untuk  n = 6

4n = 4 . 6 = 24, n2 – 7 = 62 – 7 = 36 – 7 = 31, dan 24 < 31

Misalkan S(k) benar, yaitu untuk n = k:

4k < k2 – 7

Harus dibuktikan bahwa S(k + 1) benar, yaitu untuk n = k + 1,

4(k + 1) < (k + 1)2 – 7

4(k + 1) = 4k + 4 < (k2 – 7) + 4

4k + 4 < (k2 – 7) + 13, sebab 4 < 13

4k + 4 < (k2 – 7) + (2k + 1), sebab 2k + 1 ³ 13 untuk

n ≥ 6

4k + 4 < (k2 + 2k + 1) – 7

4k + 4 < (k + 1)2 – 7

Jadi: 4n < n2 – 7 untuk semua bilangan bulat n ³ 6

Contoh 1.7

Buktikan: 6n + 2 + 72n + 1 habis dibagi oleh 43 untuk semua n Î Z+

Bukti      : S(n) : 6n + 2 + 72n + 1 habis dibagi oleh 43

S(1) benar sebab untuk n = 1:

6n + 2 + 72n + 1 = 63 + 75 = 559 = 43(13)

559 habis dibagi oleh 43

Misalkan S(k) benar, yaitu untuk n = k:

6k + 2 + 72k + 1 habis dibagi oleh 43

Harus dibuktikan bahwa S(k + 1) benar, yaitu untuk

n = k + 1, 6k + 3 +  72k+3       habis dibagi oleh 43

(6k + 3 + 72k + 3) – (6k + 2 + 72k + 1)

=          (6k + 3 – 6k + 2) + (72k + 3 – 72k +1)

=          6k + 2 (6 – 1) + 72k + 1 (72 – 1)

=          5 . 6k + 2 + 48 . 72k + 1

=          5 .6k + 2 + (5 + 43) . 72k + 1

=          5(6k + 2 + 72k + 1) + 43 . 72k + 1

=          5 . 43x + 43 . 72k + 1

                                                                6k + 3 + 72k + 3 – 43x  =  5 . 43x + 43 . 72k + 1

6k + 3 + 72k + 3  =  6(43x) + 43 . 72k + 1

=  43 (6x + 72k + 1)

6k + 3 + 72k + 3 habis dibagi oleh 43 sebab mempunyai faktor 43

Jadi: 6n + 3 + 72n + 3 habis dibagi oleh 43 untuk semua n Î Z+

 


 

Tugas Dan Latihan

Tugas

Buktikan dengan induksi matematika

1.         n < 2n untuk semua  n Î Z+

2.         n3 – n habis dibagi 3 untuk semua n Î Z+

3.         2n < !  untuk setiap bilangan bulat positif  n  ³  4

 

Latihan

Buktikan dengan induksi matematika

1.         Di dalam barisan harmonis:

1 +  + +  + …

berlaku

³ 1 + , untuk setiap bilangan bulat  n ³ 0

2.          =  nxn – 1 untuk setiap bilangan bulat  n ³ 0

3.          = +  + … +  =

4.         t2  =  12 + 22 + 32 + … + r2  =  r(r + 1)(2r + 1)/6 untuk setiap  n Î Z+

5.          =  +  +  +  + … + =  –

dengan hubungan menggunakan hubungan:

=

 

 

Rambu-Rambu Jawaban Tugas

1.         S(n) :  n < 2n

S(1) :  benar sebab untuk  n = 1:

n =1 ,    2n = 21 = 2,  dan  1 < 2

Misalkan s(k) benar, yaitu  k < 2k

Harus dibuktikan bahwa S(k+1) benar, yaitu (k + 1) < 2k+1

k <  2k ®  k + 1  < 2k + 1

®  k + 1 < 2k + 2k  (sebab 2k ≥ 1 untuk sebarang  k ≥ 1)

®  k + 1 < 2.2k

®  k + 1 < 2k+1

                Jadi:  n < 2n  untuk setiap  n Î Z+

2.         S(n) : n3 – n habis dibagi oleh 3

S(1) benar sebab untuk  n = 1:

n3 – n = 13 – 1 = 1 – 1 = 0  dan 0 habis dibagi oleh 3.

Misalkan S(k) benar, yaitu k3 – k habis dibagi oleh 3

Harus dibuktikan bahwa S(k + 1) benar, yaitu

(k + 1)3 – (k + 1) habis dibagi oleh 3

(k + 1)3 – (k + 1)  =  (k3 + 3k2 + 3k + 1) – (k + 1)

=  (k3 – k) + 3 (k2 + k)

=  3t + 3(k2 + k)

=  3(t + k2 + k)

(k + 1)3 – (k + 1) habis dibagi 3 sebab mempunyai faktor 3

Jadi: n2 – n habis dibagi 3 untuk setiap  n Î Z+

3.         S(n) : 2n < n! untuk setiap bilangan bulat positif  n ³ 4

S(4) benar sebab untuk  n = 4

2n =  24 = 16,  n!  =  4!  =  24, dan  16 < 24

Misalkan S(k) benar, yaitu 2k < k!

Harus dibuktikan bahwa S(k+1) benar yaitu:

2k+1 < (k + 1)!

2k + 1  =  2k . 2  <  2 . k !

2k+1 < (k + 1) . k!  sebab k + 1 ≥ 2 untuk sebarang k Î Z+

2k+1 <  (k + 1) !

Jadi : 2k+1 <  (k + 1)! untuk setiap bilangan asli n

 

Rambu-Rambu Jawaban Latihan

1.         S(n) :     ≥ 1 +  untuk setiap bilangan bulat n ≥ 0

Ht  = 1 + + + … +

H4 = 1 + + +   = 25/12

S(0) benar sebab untuk  n = 0:

= H1 = 1,  1 +  = 1 + 0, dan  1 ≥ 0

Misalkan benar, yaitu untuk n = k:

³ 1 +

Harus dibuktikan  benar, yaitu untuk n = k + 1:

≥ 1 + (k + 1)/2

=  1 +  + + … + + + … +

=                  +  + … +

³  (1 + ) +   + … +

³  (1 + ) +  2k .  + … +  sebab terdapat 2n suku masing-

masing tidak kurang dari                           ³  (1 + )           +

³  1 + (k + 1)/2

Jadi  ³ 1 + (n + 1)/2 untuk sebarang bilangan bulat n ³ 0

 

 

 

2.         S(n) :   = nxn-1 untuk setiap bilangan bulat  n ³ 0
S(0) benar sebab  = = =   0, nxn-1 =  0 . x-1  =  0

Misalkan S(k) benar, yaitu = kxk-1

Harus dibuktikan S(k + 1) benar, yaitu  = (k + 1)xk

 

Dx ®0

= lim , maka

 

Dx ®0

= lim

 

Dx ®0

= lim

 

Dx ®0

= lim

 

Dx ®0

= lim

= xk  xk-1 + xk

= kxk + xk

= (k + 1) xk

3.         Cara 1: Gunakan hubungan:

=

untuk mengganti setiap suku deret

Cara ini disebut cara teleskopis

Cara 2: Gunakan induksi matematika, tunjukkan:

+  =

 

4.         Tunjukkan bahwa

k(k + 1)(2k + 1)/6 + (k + 1)2  = (k + 1)(k + 2)(2k + 3)/6

 

5.          =   =

=

=

=

=

 

 

Rangkuman

Berdasarkan seluruh paparan pada Kegiatan Belajar 2 ini, maka garis besar bahan yang dibahas meliputi Definisi, Teorema, Contoh, dan Latihan tentang induksi matematika, terutama tentang notasi jumlah dan sifat-sifatnya, notasi kali dan sifat-sifatnya, prinsip pertama induksi matematika, dan pernyataan lain induksi matematika. Permasalahan yang ditampilkan berkaitan dengan hubungan jumlah

deret, hubungan pertidaksamaan, hubungan keterbagian, dan hubungan diferensial.

1. Notasi Jumlah dan Kali

 

2. Sifat-sifat :

(a) =

(b) = +

(c)  xi yj =

(d)  = xi yj

3. Prinsip Induksi Matematika

        S adalah suatu himpunan bagian dari himpunan bilangan asli yang unsur-

unsurnya memenuhi hubungan.

Jika: (a)  1 Π S

(b)   k Î S  berakibat (k + 1) Î S

maka: S memuat semua bilangan asli, yaitu S = N

4. Pernyataan Lain Induksi Matematika

      S(n) adalah suatu pernyataan yang memenuhi hubungan untuk satu atau lebih nÎN

Jika:           (a) S(1) benar

(b) S(k) benar berakibat S (k + 1) benar

maka S(k) benar untuk semua n Î N.

 

Tes Formatif 2

1. Skor 10

Carilah

2. Skor 10

Carilah

3. Skor 15

 

Carilah rs

4. Skor 15

Carilah        st

5. Skor 20

Berdasarkan identitas  = , maka dapat ditentukan bahwa

=

6 Skor 10

Carilah  =  12 + 22 + 32 + … + r2

7. Skor 10

Carilah m(m + 1)  =  1.2 + 2.3 + … + n(n + 1)

8. Skor 5

Carilah        (-2)r

9. Skor 5

Carilah 1.2 + 2.3 + 3.4 + … + k(k + 1)

 

Cocokkanlah jawaban Anda dengan Rambu-Rambu Jawaban Tes Formatif 2 yang terdapat di bagian halaman akhir dari modul ini. Kemudian perkirakan skor jawaban yang Anda kerjakan benar, dan gunakan kriteria berikut untuk mengetahui tingkat penguasaan Anda terhadap pemahaman materi Kegiatan Belajar 2.

Skor jawaban yang benar

Tingkat Penguasaan =  ————————————-  x  100 %

                                                                          100

Tingkat penguasaan Anda dikelompokkan menjadi :

Baik sekali    :  90 % – 100 %

Baik               :  80 % -  89 %

Cukup           :  70 % -  79 %

Kurang          :  <  70 %

Apabila Anda mencapai tingkat penguasaan 80 % atau lebih, maka Anda dapat meneruskan ke Modul 2. Prestasi Anda bagus sekali. Jika tingkat penguasaan Anda kurang dari 80% , maka sebaiknya Anda mengulangi materi Kegiatan Belajar 2 , terutama pada bagian-bagian yang belum Anda kuasai dengan baik.

 

 

Rambu-Rambu Jawaban Tes Formatif

Rambu-Rambu Jawaban Tes Formatif 1

1. Misalkan a,b,c Z, a < b dan c > 0, maka sesuai definisi b – a > 0. Karena

himpunan bilangan bulat positif tertutup terhadap perkalian, c > 0, dan b – a > 0

maka c(b – a) > 0, atau cb – ca > 0, berarti ca < cb atau ac < bc

2. Misalkan ada bilangan bulat positif kurang dari 1, maka sesuai dengan prinsip

urutan yang rapi,  Z+ Z+ dan Z+ tidak kosong dan mempunyai unsur terkecil a

sehingga a < 1, dengan a > 0. Selanjutnya a2 = a.a < 1.a = a. Karena a2 > 0, ber-

arti a2 adalah suatu bilangan bulat positif kurang dari a, merupakan kontradiksi.

3. (a) terurut rapi

(b) terurut rapi

(c) tidak terurut rapi

(d) terurut rapi

(e) tidak terurut rapi

(f) tidak terurut rapi

4. (a) 0

(b) 0

(c) 5

(d) -2

5. Dari [x] ≤ x ≤ [x] + 1 dapat ditentukan bahwa [x] + k ≤ x + k ≤ [x] + k + 1.

Karena [x] + k adalah suatu bilangan bulat, maka [x + k] = [x] + k

6. Jika x adalah suatu bilangan bulat, maka [x] + [-x] = x – x = 0. Jika x bukan

bilangan bulat, maka x = z + r, dimana z adalah suatu  bilangan bulat dan r  ada-

lah suatu bilangan riil dengan 0 < r < 1. Dengan demikian dapat ditentukan bah-

wa [x] + [-x] = [z + r] + [-z – r] = z + (-z – 1) = -1

7. Misalkan x = [x] + r dengan 0 ≤ r < 1. Jika r < (1/2), maka

x + (1/2) = [x] + {r + (1/2)} < [x] + 1 karena r + (1/2) < 1. Akibatnya,

[x + (1/2)] = [x], berarti 2x = 2[x] + 2r <  2[x] + 1 karena 2r < 1.

Jadi [2x] = 2[x]

Jika (1/2) ≤ r < 1, maka [x] + 1 ≤ x + {r + (1/2)} < [x] + 2, berarti

[x + (1/2) = [x] + 1. Akibatnya  2[x] + 1 ≤ 2[x] + 2r = 2([x] + r) = 2x < 2[x] + 2

Sehingga  [2x] = 2[x] + 1, dan [x] + [x + (1/2)] = [x] + [x] + 1 = 2[x] + 1 = [2x]

8. Misalkan adalah suatu bilangan rasional, maka tentu  ada  bilangan-bilangan

bulat a dan b sehingga = a/b. Akibatnya, S = {k│k, kZ+} adalah

suatu himpunan bilangan bulat positif yang tidak kosong, sehingga S mempu-

nyai unsur terkecil  s = t.Dengan demikian s- s = s- t= (s – t)

   Karena s= 2t dan s merupakan bilangan-bilangan bulat, maka :

s- s = s- t= (s – t)

juga merupakan suatu bilangan bulat, dan  s- s = s(-1) > 0 karena >1

s- s < s karena s = t, s= 2t, dan < 2. Hal ini bertentangan dengan

pemilihan s sebagai unsur bulat positif terkecil dari S.  Jadi adalah irasional

 

 

 

Rambu-Rambu Jawaban Tes Formatif 2

Gunakan Prinsip Induksi Matematika beserta sifat-sifat notasi jumlah dan kali sehingga diperoleh :

1.

2.

3.

4.

5.

6.

7.

=

8.

9. 2 + 6 + 12 + … + 110 = 1.2 + 2.3 + 3.4 + … + 10.11 =

 

Daftar Kepustakaan

Agnew, J. (1972). Exploration in Number Theory. Belmont : Brooks/Cole

Anderson, J.A., & Bell, J.M. (1977). Number Theory With Applications. New Jersey:

Prentice-Hall

Niven, I., Zuckerman, H.S., dan Montgomery, H.L. (1991). An Introduction to The

       Theory of Numbers. New York : John Wiley & Sons.

Ore, O. (1948). Number Theory and Its History. New York : McGraw-Hill

Redmond, D. (1996). Number Theory. New York : Marcel Dekker.

Rosen, K.H. (1993). Elementary Number Theory And Its Applications.

Massachusetts : Addison-Wesley.

 

Pengunjung datang dari kata kunci: